DNA & PROTEIN SYNTHESIS

2019

1.1.1	C✓✓		
1.1.2	C 🗸 🗸		
1.1.3	C✓✓		
1.1.4	B√√		
1.1.5	A ✓ ✓		
1.1.6	A 🗸 🗸		
1.1.7	C✓✓		
	C✓✓		
1.1.9	B✓✓		
1.2.1 Ur	acil		
1.2.5 rib	osome		
1.2.7 ribo	ose		
1.3.1	Both A and B✓✓		
1.3.2 1.3.3	None✓✓ B only✓✓		
1.5.5	B offig. 7		
2.1.1	(a) tRNA√/transfer RNA		(1)
	(b) Anticodon√		(1)
2.1.2	(a) UGG√√ (in correct order)		(2)
	(b) TGG√√ (in correct order)		(2)
	 The double helix DNA unwinds ✓ and unzips ✓ /weak hydrogen bonds break to form two separate strands ✓ One strand is used as a template ✓ to form mRNA ✓ using free RNA nucleotides from the nucleoplasm ✓ The mRNA is complementary to the DNA ✓ The coded message for protein synthesis is thus 		(6)
	copied onto mRNA✓	Any 6	(6)

Sex determination (S)

- Females have XX chromosomes√
- thus produce an ovum which will always carry the X chromosome✓
- Males have XY chromosomes✓
- thus a sperm will either carry X✓
- or Y√ chromosome
- If a sperm carrying the X chromosome fertilises the ovum carrying the X chromosome√
- then a female child results√
- If a sperm carrying the Y chromosome fertilises the ovum carrying the X chromosome ✓
- then a male child results√
- Therefore it is the father's gamete carrying X or Y chromosome that determines the sex of the child√
- There is a 50% chance that the child can be a boy or a girl✓

Anv 7

(7)

Blood grouping (B)

- The blood group of a child is determined by the alleles received from both parents✓
- The blood group of the mother, the child and the possible father is determined

 ✓
- If the blood group of the mother and possible father cannot lead to the blood group of the child✓
- the man is not the father√
- If the blood group of the mother and the possible father can lead to the blood group of the child√
- the man might be the father√
- This is not conclusive√
- because many men have the same blood group✓

Any 5

(5)

DNA profiling (P)

- A child received DNA from both parents√
- The DNA profiles of the mother, child and the possible father are determined✓
- A comparison of the DNA bands of the mother and the child is made√
- The remaining DNA bands are compared to the possible father's DNA bands✓
- If all the remaining DNA bands in the child's profile match the possible father's DNA bands√
- then the possible father is the biological father√
- If all the remaining DNA bands in the child's profile does not match the possible father's DNA bands√
- then the possible father is not the biological father√

Any 5

(5)

2018

- 1.2.1 Hydrogen bonds
- 1.2.2 Genome
- 1.3.3 A only

St _ _		s singl	le stranded√ e up of nucleotides√ which comprise:		
_	ribose		· ·		
_		hate√			
_	_		bases v which are		
_			acil, guanine and cytosine√/ (A, U, G and C) ate group is attached to the ribose sugar√		
_	•		ate group is attached to the ribose sugar√		
_			NA are arranged in triplets√		
			n mRNA√		
_	and a	nticodo	ons on tRNA√		
-			clover-leaf√/hairpin structure		
-	tRNA	has a	place of attachment for an amino acid√	Any	(9)
- -	mRNA during	A√ form g trans	cription√/by copying the coded message from DNA		
			out of the nucleus√		
			s to the ribosome✓		
	•	_	slation√ on matches the codon√		
	tRNA		in matches the codon?		
_			equired amino acid√ to the ribosome		
_	_		become attached by peptide bonds√		
_	to forr	n the r	required protein√	Any	(8)
20)17				
20	, , ,				
1.	1.1 B				
1.2	2.1 U	racil			
1.2	2.5 D	eoxyr	ribose		
1.	5.1	Tra	anslation√		(1)
1	5.2	(a)	Ribosome√		(1)
٠.	0.2	` '	mRNA√/messenger RNA		(1)
			Peptide /		(1)
		, ,	•		
1.	5.3		C√		(1)
			B√		(1)
		(c)	D√		(1)
					/ 7 \

2.1.1	2√	(1)
2.1.2	CUC√	(1)
2.1.3	3 (a) TGG√ (b) Aspartate√	
2.1.4	(a) - C was replaced by U√ on the 4 th codon√/AGC	
	OR - AGC√/the 4 th codon changed to AGU√	(2)
	(b) - It codes for the same amino acid√/serine- Therefore there will be no effect√/same protein formed	(2)
2.1.5	 The process is transcription√* Compulsory mark The double helix DNA molecule unwinds√ When the hydrogen bonds break√ the DNA molecule unzips√/2 DNA strands separate One strand is used as the template √to form mRNA using free RNA nucleotides√ from the nucleoplasm The mRNA is complementary to DNA√/A-U, C-G This process is controlled by enzymes√ 1* + Any 5 	(6)
2016		
1.1.5 C	1.1.7 B	
1.2.1 Rik	posome	
1.2.2 Pe	ptide	
1.2.3 DN	NA replication	
1.2.6 Hy	pothesis	
1.2.7 tRI	NA / transfer RNA	
1.3.3 A	only	
1.4.1	(a) Adenine√/A	(1)
	(b) Deoxyribose√sugar	(1)
	(c) Hydrogen bond√	(1)
1.4.2	10√	(1)
1.4.3	- DNA has the nitrogen base thymine√ whereas RNA has the nitrogen base uracil√ (Mark first ONE only)	(2) (6)

2.5.1	Transcription✓		
2.5.2	Nucleus√/nucleoplasm		
2.5.3	(a) GTC√		(1)
	(b) UAC√		(1)
2.5.4	Valine√√		(2)
2.5.5	 A mutation affects the nucleotide sequence // nitrogen b sequence/gene structure Resulting in a changed mRNA // codon A different amino acid / may be coded for by tRNA // anticodon 	ase Any 3	(3)

2015

1.1.3 B 1.1.4 C

1.3.1 B only

- 3.1.1 More mistakes are made √/high rates of mutation
 - when RNA is copied ✓/than when DNA is copied

3.1.2 - A mutation could allow the virus to be transmitted through the air√

- This would allow the virus to be spread more easily✓ (2)

3.2.1

DNA	RNA
Double stranded ✓ molecule	 Single stranded ✓ molecule
2. Has a helix√ shape	2. Is a straight molecule ✓
 One of the nitrogen bases is thymine√ 	 The nitrogen base uracil ✓ in place of thymine
 Contains deoxyribose ✓ sugars 	4. Contains ribose√ sugars
5. A longer ✓ molecule	5. A shorter√ molecule
6. Paired bases√	6. Unpaired bases√

(Mark first THREE only)

(Any 3 x 2) table +1 (7)

(2)

3.2.2 Helps to:

- Solve crimes √/criminal investigations
- Identify organisms from their tissues√
- Identify family relationship√
- Test for specific alleles that can cause a genetic disorder√
- Establish matching tissues for organ transplants√
- Used in research into variation in populations ✓

(Mark first TWO only)

Any 2 (2)

- 3.2.3 Samples containing DNA can be planted√/person was framed
 - Human error√ during DNA profiling process
 - Costly procedure√
 - Invasion of privacy√

(Mark first TWO only)

Any 2

(2) (44)

PROTEIN SYNTHESIS

Transcription√ (T)

- Double stranded DNA unwinds ✓
- and unzips when√
- the hydrogen bonds break√
- and this is controlled by enzymes√
- One strand is used as a template ✓
- to form mRNA✓
- using free RNA nucleotides from the nucleoplasm√
- The mRNA is complementary to the DNA✓
- mRNA now has the coded message for protein synthesis√

Translation√ (S)

- mRNA moves from the nucleus √/to the ribosome
- Each tRNA carries an amino acid√
- tRNA carries the amino acid to the ribosome√
- When the anticodon on the tRNA✓
- matches the codon on the mRNA√
- Amino acids become attached ✓ in the sequence determined by the mRNA
- by peptide bonds√
- to form the required protein√

Max 13

EFFECTS OF A MUTATION (M)

- A gene mutation affects arrangement/type of the nitrogen bases ✓/nucleotides
- This changes the code on the DNA ✓
- which changes the code on the RNA✓
- A different amino acid√ may be coded for
- which causes a change in the amino acid sequence ✓ in the protein
- leading to the formation of a different/alternate/no protein Max 4 (17)

3.2.1	DNA	RNA
	1. Double stranded✓	1. Single stranded√
	molecule	molecule
	Has a helix ✓ shape	2. Is a straight molecule ✓
	3. One of the nitrogen	3. The nitrogen base uracil√ in
	bases is thymine√	place of thymine
	4. Contains deoxyribose√	4. Contains ribose√ sugars
	sugars	

(Mark first THREE only)

5. A longer ✓ molecule6. Paired bases ✓

(Any 3 x 2)

5. A shorter√ molecule

6. Unpaired bases√

table +1 (7)

- 3.2.2 Helps to:
 - Solve crimes ✓/criminal investigations
 - Identify organisms from their tissues√
 - Identify family relationship√
 - Test for specific alleles that can cause a genetic disorder√
 - Establish matching tissues for organ transplants√
 - Used in research into variation in populations ✓

(Mark first TWO only)

Any 2 (2)

- 3.2.3 Samples containing DNA can be planted√/person was framed
 - Human error√ during DNA profiling process
 - Costly procedure√
 - Invasion of privacy√

(Mark first TWO only)

Any 2

(2)